

MIL-STD-1553 Characterization using Existing Interface Functionality

John M. Willis Robert F. Mills Logan O. Mailloux Scott R. Graham

- Purpose of research
- Motivation
- Methodology
- Results
- Conclusions
- Future research
- Questions

Outline

 Objective: Detect rogue devices without additional size, weight and power (SWAP) requirements

Research Questions:

- What capability exists on current 1553 devices for characterization?
- Can they be used for device characterization & discrimination?
- What limitations exist with using the built-in technology?

Motivation

MIL-STD-1553 avionics data bus

- Ubiquitous military standard
- Developed 1973 SAE
- Broadcast capable, bit stuffing, TDMA
- Equivalent technologies

Arbitration Field Control Data CRC Field Image: Model Image: Model

Controller Area Network (CAN) bus

- Ubiquitous Industry Standard
- Developed 1983 SAE
- Broadcast capable, bit stuffing, TDMA
- Proven / demonstrated vulnerabilities

Top Left Image Courtesy Roland Gamper <u>under Creative Commons. https://en.wikipedia.org/wiki/MIL-STD-1553#/media/File:RTtoBC2.png</u> Top Right Image Courtesy Endres under Creative Commons: <u>https://commons.wikimedia.org/wiki/File:CAN-Frame_mit_Pegeln_mit_Stuffbits.svg</u> Bottom Left Image Modified from SudsySutherland under Creative Commons: <u>https://sudsysutherland.deviantart.com/art/F-16-Fighting-Falcon-124505343</u> Bottom Right Modified from Non-attribution under Creative Commons: <u>https://pixabay.com/en/maserati-gt-autos-1651682/</u>

- Markov chains to create an IDS based on periodicity
 - Good for picking up anomalous sequences but not for detecting a rogue.

Wired Signal Distinct Native Attributes (WS-DNA) fingerprinting

- Fingerprinting the sync portion of 1553 messages to discriminate between multiple devices
- Sophisticated equipment required no clear path for transition and implementation
- Difficulty in updating for new devices

[Lop1] Lopez, Temple, Mullins "Exploitation of HART Wired Signal Distinct Native Attribute (WS-DNA) Features to Verify Field Device Identity and Infer Operating State, C.G. Panayiotou et al. (Eds.): CRITIS 2014, LNCS 8985, pp. 24–30, 2016.

Oscilloscope Image Courtesy of Wikimedia Commons.

Methodology

WS-DNA = Wired Signal Distinct Native Attribute Fingerprinting

 Well-established method for device discrimination at the physical layer

Leverage native capability in commercial 1553 devices

- Signal collection/extraction
- Device classification and verification
- Updatability
- Equipment Agnostic

[Lop2] Lopez, Liefer, Busho, Temple, "Enhancing CIKR Level-0 PHY Process Security Using Field Device DNA Features," IEEE Trans on Info Forensics & Security, Vol. 13, No. 5, pp. 1215-1229, May 2018.

Two baseline configurations used:

- Simple bus with no cabling and only one coupler connecting the bus controller, bus monitor, and a remote terminal
- 150 foot bus more representative of what would be found on an aircraft or ship
- In each configuration, three LRUs (line replaceable units) were used
 - Train classifier using data collects using LRUs in a variety of bus locations
 - After model has been developed, assess ability to accurately classify signals as coming from a specific LRU
 - Assess ability to recognize if a device is not one that is expected

Device 1-3

Configuration 1: Proof of Concept Diagram Key: C1 Τ-78Ω Τ-78Ω **Termination Resistor Bus Controller or Monitor** BM ဖွ Device 1-3 **RT** Device ರ Coupler BC Twin-axial Cable (inches) -----**Configuration 2: Operational Simulation** C1 C2 C3 C4 C5 C6 CL-240 CL-180 CL-600 Τ-78Ω CL-180 CL-600 Τ-78Ω BM Device 1-3 are the same Make/Model: BC

Serial # Discrimination

8

WS-DNA – Signal Collection

WS-DNA – Burst Extraction

- Alignment / centered
- Absolute value
- Regions and sub-regions of interest

	Start	Stop	Subrationa	Samples/
	Index	Index	Subregions	Subregion
	10	81	9	8
	8	175	24	7
5	1	420	60	7

WS-DNA – Classifier Model

0.04

Fisher Space Plots with 7500 testing waveforms (SNR 50 dB Model):

Classification & Verification

True-Positive - Cases where we predicted a certain LRU, and it is that LRU

True Verification Rate (TVR) - Cases where an LRU authentic threshold is met, and it is that LRU

False Verification Rate (FVR) - Cases where LRU authentic threshold is met, but it is *not* that LRU

Configuration 1 Test

									Cla	assified	As						
			C1 -	Νο Cou	upler	6 in	Cable 8	k C2	36 in	Cable a	& C2	180 ii	n Cable	& C2	240 i	n Cable	& C2
		_	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
	_	Sync	74.3	19.9	5.81	69.6	25.1	5.31	70.9	23.3	5.86	79.2	16	4.76	82.8	7.56	9.64
	, vec	RT	84	13.6	2.42	79.4	16.3	4.3	77.3	16.5	6.28	73.1	9.62	17.3	53	3.82	43.2
evice		Status	92	7.27	0.71	89.5	9.69	0.84	88.9	10	1.06	89.1	6.66	4.28	70.8	2.55	26.7
		Sync	24.5	70.2	5.34	18.8	73.5	7.69	20.4	71.1	8.5	39	52.8	8.23	44.7	46.3	9.01
al De	Jev 2	RT	10.8	87.9	1.23	8.62	87.8	3.54	9.47	86.2	4.34	19.7	73.1	7.2	22.7	65.5	11.9
Actu		Status	6.42	93.3	0.33	5.57	93.5	0.92	6.23	92.6	1.13	15.7	81.2	3.16	19.1	74.8	6.12
	_	Sync	28.8	12.2	59	46	13	41	44.8	10.2	45	36	5	59	35.3	5.09	59.6
	Jev S	RT	13.8	4.12	82.1	12.5	4.18	83.3	9.55	3.15	87.3	3.62	0.99	95.4	3.56	1.03	95.4
		Status	8.42	2.64	88.9	9.07	3.49	87.4	5.98	2.59	91.4	1.57	0.58	97.9	1.28	0.64	98.1

Classification Trends:

- Longer ROI increases truepositive classification accuracy
 - 17.09% gain Sync->RT
 - 7.90% gain RT->Status
- Only one scenario incorrectShifting Effects

									Acce	ptance	Rate						
			C1 -	No Cou	ıpler	6 in	Cable 8	C2	36 in	Cable &	& C2	180 iı	n Cable	& C2	240 i	n Cable	& C2
			Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
		Sync	89.6	64	50.2	84.4	61.8	39.5	84.3	61.3	41.5	82.7	48.8	38.7	80.6	36.9	43.9
)ev	RT	89.6	31.4	7	89.1	36.5	11.3	87.3	35.6	14.6	80.2	22.8	30.5	56	10.1	52.9
		Status	83.1	10.2	0.32	85.8	14.1	0.47	84.3	14.8	0.67	82	10.5	2.61	53.7	3.69	17.3
evice	2	Sync	57.9	88.1	44.4	47.6	82.3	35.2	49.5	83.2	37.6	71.2	83.8	51	76.3	81.2	55.2
al De	Jev 2	RT	30.1	88.9	2.56	25	85.2	5.25	26.6	84.9	6.2	42.8	81.7	12.9	46.1	75.3	20.1
Actu		Status	10.4	86	0.18	9.09	85.3	0.42	10.3	85.7	0.52	21.2	78.4	1.43	23.6	70.5	3.18
	3	Sync	60.3	52.2	90.3	76.4	54.9	83.2	73.2	48.9	83.3	56.8	30.4	80.1	52.9	27.7	<mark>76.7</mark>
	Jev 🤅	RT	20.8	6.42	87.1	18.9	6.37	87.5	14.7	4.34	87.8	5.53	1.31	73.4	5.08	1.3	66.2
		Status	4.97	1.22	80.8	5.65	1.72	79.1	3.51	1.13	82.2	0.91	0.2	75.1	0.66	0.22	<mark>67.8</mark>

Verification Trends:

- Generally more cabling leads to lower TVR
 - Longer ROI reduces FVR
 - Sync 51.53%
 - RT -18.50%
 - Status 5.84%
 - Shifting Effects

٠

٠

Configuration 1 Test 1 Shift

No Coupler (Baseline)

Configuration 2 Test 1

Fingerprint

Analysis

Model

Deployment

Configuration 2 Test 1 Results

											Classi	fied As								
				C1			C2			C3			C4			C5			C6	
			Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
	~	Sync	63.	13.9	23.1	58.4	23.1	18.5	44.6	55.4	0.	5.7	94.1	0.1	0.	91.6	8.4	0.	68.8	31.2
levice)ev	RT	78.9	7.	14.1	0.6	99.4	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.
		Status	90.3	2.1	7.6	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	88.5	11.5	0.	90.1	9.9
	2	Sync	21.7	66.7	11.6	34.1	47.	18.9	16.8	83.2	0.	1.9	97.9	0.3	0.	93.2	6.8	0.	78.5	21.5
)ev	RT	16.1	82.6	1.3	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.
ctus		Status	8.1	91.6	0.3	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	95.8	4.3	0.	94.	6.
∢	З	Sync	11.8	3.6	84.6	34.5	34.	31.5	43.1	56.8	0.1	1.5	98.5	0.	0.	82.5	17.5	0.	38.4	61.6
)ev	RT	5.7	0.2	94.1	3.1	96.4	0.5	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.
		Status	1.3	0.	98.7	1.3	98.7	0.	0.	100.	0.	0.	100.	0.	0.	61.7	38.3	0.	84.1	15.9

Classification Trends:

- Very degraded results after C1
- Strong favoring of Device 2

Verification Trends:

Results not reliable after C1...especially for longer ROIs

										A	ccepta	nce Ra	te							
				C1			C2			C3			C4			C5			C6	
		_	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
	1	Sync	87.1	52.7	56.7	70.4	48.2	37.2	2.1	2.3	0.1	1.4	5.5	0.3	0.	0.	0.	0.	0.	0.
evice	Pev	RT	87.8	16.8	23.6	1.5	30.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
		Status	80.5	1.6	4.2	0.	1.8	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	2	Sync	60.9	88.4	31.4	63.5	71.6	36.8	1.9	5.3	0.1	1.3	7.7	0.3	0.	0.	0.	0.	0.	0.
Ō	ev	RT	33.	86.8	1.6	0.	5.9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ctue		Status	5.8	79.7	0.	0.	0.1	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
Aci	3	Sync	41.3	18.5	87.8	61.	56.4	47.6	11.	12.9	0.8	0.6	4.8	0.1	0.	0.	0.	0.	0.	0.
	ev	RT	13.	0.3	87.6	7.5	65.9	0.3	0.	0.1	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
		Status	0.6	0.	82.7	0.9	53.3	0.	0.	0.2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

Configuration 2 Test 1 Shift

Configuration 2 Test 2

											Accepta	nce Rate								
			(C1 Rogue	9	(C2 Rogue	9	C	3 Rogue)	(C4 Rogue)	(C5 Rogue	9		C6 Rogue)
			Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
20		Sync	34.5	83.	26.9	48.3	44.8	12.5	1.3	10.	0.5	1.5	9.6	2.8	0.	0.	0.	0.	0.	0.
Act De)ev	RT	37.1	63.	12.3	0.2	9.9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
		Status	31.7	22.2	8.4	0.	6.4	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

Verification Trends:

- High FVR for Dev 2 with Sync and RT ROIs off C1.
- FVR better on average for C1:
 - Sync 48.13% RT 37.37% Status 20.77%

Configuration 2 Test 3

Configuration 2 Test 3 Results

												Cla	ssified	As									
				C1 - No Listene) r	C1	- Lister	ner	C2	- Liste	ner	C	8-Listen	er	C4	- Lister	her	C5	- Liste	ner	C6	- Lister	ner
			Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
	-	Sync	63.6	18.1	18.3	26.7	4.8	68.5	0.	2.7	97.3	0.	15.6	84.5	0.3	43.	56.7	71.8	25.6	2.6	61.1	36.7	2.2
evice)ev	RT	78.9	8.	13.1	0.8	0.	99.2	0.	0.	100.	0.	0.	100.	0.3	0.5	99.2	67.7	32.1	0.2	59.9	39.7	0.4
		Status	84.9	1.6	13.5	3.2	0.	96.8	0.	0.	100.	1.3	0.2	98.5	26.9	16.7	56.4	91.5	8.5	0.1	87.	8.5	4.6
	2	Sync	23.3	68.	8.7	9.6	39.2	51.3	0.	16.8	83.2	0.	49.4	50.6	0.	78.2	21.9	11.6	86.9	1.5	14.4	84.	1.5
Ď)ev	RT	16.3	82.5	1.3	4.7	4.5	90.9	0.	0.	100.	0.	0.6	99.4	0.2	10.8	89.1	1.4	98.6	0.	2.2	97.8	0.
vctua		Status	12.3	85.6	2.1	5.8	4.3	89.9	0.	0.1	99.9	0.6	10.2	89.2	3.5	64.2	32.3	0.7	99.3	0.	11.7	86.8	1.5
٩ (3	Sync	17.9	3.5	78.6	2.3	0.6	97.1	0.	0.8	99.2	0.	2.8	97.2	0.	15.	85.1	30.	18.7	51.2	40.	30.7	29.3
	ev.	RT	6.3	0.3	93.4	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.	100.	38.5	10.	51.5	54.	15.8	30.2
		Status	0.9	0.	99.1	0.	0.	100.	0.	0.	100.	0.	0.	100.	0.	0.7	99.3	30.4	8.8	60.7	16.9	2.7	80.4

Classification & Verification:

- Results worsen C1 \rightarrow C2
- Improves $C2 \rightarrow C5$
- Slightly degrades at C6

												Acce	ptance	Rate									
			(L	C1 - No listener		C1	- Lister	her	C2	- Lister	her	C3	8-Listen	er	C4	- Lister	ner	C5	- Lister	her	C6	- Lister	ner
			Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3	Dev 1	Dev 2	Dev 3
	-	Sync	87.4	53.4	58.	54.1	21.3	87.7	0.2	0.3	18.8	0.2	1.1	11.4	3.8	20.7	32.1	81.9	55.7	22.5	76.4	63.1	19.7
)ev	RT	87.	15.6	23.3	1.7	0.	53.7	0.	0.	0.	0.	0.	3.9	0.9	0.1	56.8	64.5	32.4	0.9	58.7	36.4	1.3
a l		Status	70.2	0.7	6.4	0.5	0.	30.4	0.	0.	0.6	0.4	0.	41.9	15.3	4.9	33.	61.2	3.4	0.	70.7	4.5	2.
evic	2	Sync	59.1	88.7	38.1	38.5	58.9	74.7	0.	0.3	4.8	0.	0.2	1.3	0.1	4.9	3.2	32.1	83.7	9.9	32.2	79.2	10.5
)eV	RT	29.5	85.	1.7	8.7	1.4	81.1	0.	0.	0.7	0.	0.	5.8	0.4	0.4	30.8	3.8	68.8	0.	5.1	66.8	0.
kctu		Status	7.1	66.5	0.2	2.	0.4	65.	0.	0.	12.8	0.2	0.3	33.8	1.1	8.8	8.5	0.4	71.	0.	7.5	63.3	0.2
٩	3	Sync	42.2	18.2	89.3	10.4	3.5	69.9	0.	0.	2.7	0.	0.	1.4	0.1	1.7	7.7	63.7	50.7	82.1	74.6	66.2	68.5
)ev	RT	12.1	0.3	87.4	0.	0.	6.	0.	0.	0.	0.	0.	0.	0.	0.	2.2	50.7	11.9	59.7	67.8	20.7	40.2
		Status	0.3	0.	79.6	0.	0.	5.5	0.	0.	0.	0.	0.	2.6	0.	0.	28.8	16.5	1.9	37.	8.6	0.6	59.8

Configuration 2 Test 3 Shift

MDA models work well for baseline configuration

- 90+% for most status classification and 80+% verification
- Approach breaks down for configuration changes, swapped positions, or added devices
 - Avionics buses are fairly stable and don't (shouldn't) change much
 - Implication \rightarrow perfectly suited to detect jamming, masquerading, and eavesdropping
- WS-DNA and Alta approach could be easily & quickly transitioned to real world operations
 - Little or no cost
 - Minimal equipment required
 - Real time
 - Provides capability that does not currently exist

- Migrating the work to an operational 1553 bus could prove its viability to a program office
- Expanding program to auto-update MDA model over time implement entire WS-DNA process in the Alta card
- Additional exploration and analysis of the Fisher shifting ... i.e., can it be predicted?

Questions?

References

- [1] Condor Engineering Inc, "MIL-STD-1553 Tutorial," 2000.
- [2] A. Nourian and S. Madnick, "A Systems Theoretic Approach to the Security Threats in Cyber Physical Systems Applied to Stuxnet Arash," *IEEE Trans. Dependable Secure. Computer*, 2015.
- [3] D. Kushner, "The Real Story of Stuxnet," *IEEE Spectrum*, 2013. [Online]. Available: http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet. [Accessed: 13-Jun-2017].
- [4] S. Checkoway et al., "Comprehensive Experimental Analyses of Automotive Attack Surfaces," USENIX Secure., 2011.
- [5] Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu, "Review on cyber-physical systems," IEEE/CAA J. Autom. Sin., vol. 4, no. 1, pp. 27–40, 2017.
- [6] Department of Defensce, "MIL-STD-1553B 22Jan79.pdf." 1979.
- [7] K.-T. Cho and K. G. Shin, "Fingerprinting Electronic Control Units for Vehicle Intrusion Detection Fingerprinting Electronic Control Units for Vehicle Intrusion Detection," 25th USENIX Secure. Symp. is, 2016.
- [8] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, "Automobile Driver Fingerprinting," Proc. Priv. Enhancing Technol., vol. 2016, no. 1, pp. 34–51.
- [9] A. Taylor, S. Leblanc, and N. Japkowicz, "Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks."
- [10] A. Taylor, N. Japkowicz, and S. Leblanc, "Frequency-based anomaly detection for the automotive CAN bus," in 2015 World Congress on Industrial Control Systems Security, WCICSS 2015, 2016.
- [11] O. Stan, Y. Elovici, A. Shabtai, G. Shugol, R. Tikochinski, and S. Kur, "Protecting Military Avionics Platforms from Attacks on MIL-STD-1553 Communication Bus."
- [12] C. M. Talbot, M. A. Temple, T. J. Carbino, and J. A. Betances, "Detecting rogue attacks on commercial wireless insteon home automation systems," no. 17, 2017.
- [13] T. J. Bihl, K. W. Bauer, and M. A. Temple, "Feature Selection for RF Fingerprinting with Multiple Discriminant Analysis and Using ZigBee Device Emissions," *IEEE Trans. Inf. Forensics Secure.*, 2016.
- [14] Alta Data Technologies LLC, "MIL-STD-1553 Tutorial and Reference," 2014.
- [15] Department of Defense, "MIL-STD-1553B: Interface Std for Digital Time Division Command/Response Multiplex Data Bus," 1996.
- [16] D. K. (David K. Cheng, Field and wave electromagnetics. Addison-Wesley, 1989.
- [17] N. H. Modi, J. R. Armstrong, J. G. Tront, and M. Z. Khan, "Modeling and simulation of 1553 bus for upset tolerance experiments," in Seventh Annual International Phoenix Conference on Computers an Communications. 1988 Conference Proceedings, 1998, pp. 131–135.
- [18] Department of Defense, "MIL-HDBK-1553A Multiplex Applications Handbook," 1988.
- [19] Alta Data Technologies LLC, "AltaAPI Software User's Manual," 2016.
- [20] B. Sklar, Digital Communications: Fundamentals and Applications. Prentice-Hall PTR, 2001.
- [21] J. Lopez, N. C. Liefer, R. Busho, Colin, and M. A. Temple, "Enhancing Critical Infrastructure and Key Resources (CIKR) Level-0 Physical Process Security Using Field Device Distinct Native Attribute Features," *IEEE Trans. Inf. FORENSICS Secure.*
- [22] J. Lopez, M. A. Temple, and B. E. Mullins, "Exploitation of HART Wired Signal Distinct Native Attribute (WS-DNA) Features to Verify Field Device Identity and Infer Operating State .," 9th Int. Conf. Crit. Inf. Infrastructures Secure., 2014.